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ABSTRACT

Recent conjectures concerning the correlation between regions of high
local helicity and low dissipation are examined from a rigorous theoretical
standpoint based on the Navier-Stokes equations. It is proven that only the
solenoidal part of the Lamb vector w x u (which is directly tied to the
nonlocal convection and stretching of vortex lines) contributes to the energy
cascade in turbulence. Consequently, it is shown that regions of low dissipa-
tion can be associated with either low or high helicity--a result which dis-
proves earlier speculations concerning this direct connection between helicity
and the energy cascade. Some brief examples are given along with a discussion
of the consistency of these results with the most recent computations of heli-

city fluctuations in incompressible turbulent flows.
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During the past decade, helical structures have been a subject of in-
creasing interest among researchers in turbulence. Various speculations
concerning the relationship between helicity fluctuations and turbulence
activity have been put forth beginning with the papers of Levich and his co-
workers.l—5 In particular, claims have been made concerning the direct corre-
lation between regions of high helicity and low dissipation. More recent
theoretical investigations and numerical simulations of incompressible turbu-
lent flows have cast grave suspicions on the existence of such a correlation
but speculations along these lines continue to persist in the literature. The
purpose of this paper is to show conclusively, based on a rigorous analysis of
the Navier-Stokes equations, that there is no direct correlation between re-
gions of high helicity and low dissipation in turbulence. Specific examples
will be given along with a discussion of the consistency of the results to be
derived herein with those obtained previously from direct numerical simula-
tions of the Navier-Stokes equations. Since the results of any given direct
numerical simulation of the Navier-Stokes equations, at high Reynolds numbers,
are subject to some doubt, it is essential that a corroborating theoretical
argument be provided if this issue is to be resolved.

We will consider the incompressible turbulent flow of a homogeneous, vis-
cous fluid governed by the Navier—-Stokes equation
%¥-+ uVu = -Vp + szu (1
and continuity equation

Veu = 0. (2)



Here, u 1is the velocity vector, p 1is the modified pressure (which can in-
clude a gravitational body force potential), and v is the kinematic vis-
cosity of the fluid. The acceleration on the left-hand side of Eq. (1) can be

written in the alternative form9

Ju _ du 1 2
—E-+uVu_a—t—+m><u+7V|u| (3)
where
w=Vxu (4)
is the vorticity vector and W %X u is usually referred to as the Lamb

vector. This gives rise to the alternative form of the Navier—-Stokes equation

— +wx u=-Y(p +-% |u|2) + vv2a. (5)

Since the cascade of energy is a nonlinear velocity effect, it is clear that
it must emanate from the Lamb vector W X W. Furthermore, since the vector
identity

(uew)? + la x m|2 = lulzlwlz (6)

holds, it 1is clear that regions of high helicity density

h = uw
are assoclated with small Lamb vectors lw x ul when each are normalized
with respect to lu] |w]. This has motivated several researchers to con-

jecture that regions of high helicity have an associated low dissipation due



to a reduction in the energy cascade.l'5 Such conjectures have led to the
hypothesis that helical structures are coherent and endure for relatively long
times.

It will now be shown that the speculations made in the literature con-
cerning helicity and dissipation are not supported by the Navier-Stokes equa-
tionss In order to accomplish this task, we will decompose the Lamb vector
into irrotational and solenoidal parts (i.e., a Helmholtz decomposition) as

follows

o xu=Va +Vx8 (7)

where o is scalar field and 8 is a vector field which can be made
solenoidal (v-B = 0) with no loss of generality. After using this

Helmholtz decomposition, Eq. (6) can be written in the form

du _ 1 .2 2

5?'+ VxBg=-V(p+ 2"“' +a) + v u. (8)
The scalar potential « is absorbed by the pressure and has no effect on the

evolution of the velocity field wu which determines the energy cascade. It

is thus clear that the energy cascade arises only from the solenoidal part of

the Lamb vector V x B. Consistent with Eq. (6), small magnitudes of the

solenoidal part of ®w x u need not be associated with large values of wurw
(i.e., |V x BI can be small, with large |Va| and correspondingly small
uew)e

For flow in an infinite domain,

v X(u xll’) (9)

1
“w) T ¢
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where the notation ®7 = w(x",t) and u” = u(x",t) is utilized. Eq. (9)

follows from a direct application of the vector identity
2 2
Vx (VxB)=V(VB) -V'B=-V"B (10)

(where we have made use of the fact that 8 is solenoidal) along with the
construction of the Green”s function solution of the resulting Poisson equa-
tion.10 Since,

Vx (0 xu) = uVo - @ Vu (11)

it follows that

VxB= '}ﬁr_ vV x f-l———rx}_x (u" Ve - u’-V’u’)d3x'. (12)
Physically, the vector field uVo - w-Vu accounts for the convection and
stretching of vortex lines in the fluid. Hence, it is obvious that the energy
cascade results from the nonlocal convection and stretching of vortex lines.
It should be noted that the vorticity stretching term w*Vu gives rise to
the usual energy cascade from large to small scales, whereas, the convective
vorticity term u* Vo can give rise to a reverse energy cascade from small
scales to large scales (this has been rigorously proven for two-dimensional
turbulencell).

It will now be demonstrated by presenting counterexamples that there is
no direct correlation between the turbulence dissipation (which is directly

tied to the energy cascade) and local fluctuations in the helicity. Consider

the case of two—-dimensional turbulence with the velocity field




u(x,y,t) = ux(x,y,t)i + uy(x,y,t)j (13)
and its associated vorticity field
o = w(x,y,t)k. (14)
For such a two~dimensional flow, the helicity density vanishes, i.e.,
h = uw = 0, (15)
However, it is well known that two-dimensional turbulence exhibits low dissi-
pation at high Reynolds numbers due to spectral blocking (i.e., energy actual-
ly undergoes a reverse cascade from the small scales to the large scales which
dramatically reduces the dissipation; see Fjortoftll). In a Beltrami flow,

uxw=20 (16)

and, hence, the normalized helicity density hy assumes its maximum value of

one, i.e.,

- Juew!
hN = ol Tw 1 (17)
(in general, hy can assume the range of values 0 S.hn.ﬁ 1). However,

since the energy cascade arises from the Lamb vector w x u (which vanishes

for a Beltrami flow), it follows that Beltrami flows have low dissipation at

high Reynolds numbers. Hence, Beltrami flows and two—dimensional flows each

have low dissipation, at high Reynolds numbers, but have helicity densities



that are at the opposite extremes (the former has a small normalized heli-

city hy = 0 while the latter has a large normalized helicity hy = 1). It

is thus clear that regions of low dissipation can be associated with either

high or low helicity density which disproves the earlier claims made concern-

ing the direct correlation between helicity and dissipation. In fact, it can

be shown that for a given turbulence dissipation there can be arbitrarily dif-

ferent normalized helicity fluctuations. For example, consider two turbulent

*
flows with velocities u and u that are related as follows
*
wo=u+ U(e), (18)

where Uo(t) can be any random function of time alone. If we take Uo(t)
to satisfy the constraint

10 (e) | > [ulx,e) |

for all x, t, it follows that

e Jutt] (w2l
N ~ lu*| IN*I Tu + UOT'“"

h (19)

and, hence,

h; = 1%&?1 = |cos(k,u)l (20)

where A = UO/IUOI is an arbitrary unit vector that is independent of the
*
vorticity vector w. Hence, the normalized helicity hN associated with

%
the velocity field u can be varied independently of the corresponding



helicity associated with the velocity field u. However, both velocity

*
fields u and u have the same dissipation, i.e.,

* *
S auk auk - auk auk

axz axl =V axl axl b
where an overbar represents an average and the Einstein summation convention
applies to repeated indices. It 1is thus clear that, in general, there is no
direct correlation between local fluctuations in the helicity and the dissipa-
tion rate of turbulence.

Finally, comparisons will be made with some recent computational studies
of helicity based on direct numerical simulations of the Navier-Stokes equa-
tions for homogeneous turbulent flows as well as for turbulent channel flow.
The recent computations of Rogers and Moin/ for turbulent channel flow indi-
cate that peaks in the probability density function for the normalized heli-
city density are not associated with regions of low dissipation. To be more
specific, the pdf for the normalized helicity density conditioned on low dis-
sipation were either fairly flat or slightly peaked at hy = 0. This is in
stark constrast to the results of Pelz, et al.4 who claimed that in the in-
terior of the channel, this pdf for hy is strongly peaked at hy =1 (in-
dicative of a Beltrami flow where uxw=0), This disparity in results is
most likely to have arisen due to inadequate resolution in the computations of

4

Pelz, et al.4 (the computations of Pelz, et al.” were conducted on a 323 grid

whereas those of Rogers and Moin’ were conducted on a 1283 grid). Similarly,
Rogers and Moin’ found that the pdf for the normalized helicity density (con-

ditioned on low dissipation) obtained from direct numerical simulations of

homogeneous turbulent shear flow were fairly flat——another example of the



lack of a direct correlation between high helicity and low dissipation. The
recent direct simulations of Kerr8 (i.e., a 1283 forced pseudo-spectral simu-
lation of turbulence in a periodic box) also indicated that there is no evi-
dence that regions with enhanced normalized helicity are directly involved in
retarding the energy cascade process. It is thus clear that the theoretical
results presented herein are consistent with the most recent and highly re-
solved numerical studies of helicity in turbulence.

In conclusion, it has been rigorously demonstrated that there is no di-
rect correlation between regions of high helicity and low dissipation. 1In

fact, regions of low dissipation can be associated with either low or high

helicity. Furthermore, it was proven that the theoretical argument which
initiated this conjecﬁure was defective in its neglect of the fact that low
magnitudes of the solenoidal part of the Lamb vector (which is the only con-
tributor to the energy cascade process) are not necessarily associated with
high wvalues of helicity. It is therefore highly doubtful that helicity
fluctuations can play an important role in the correlation of turbulence

activity that is directly tied to the energy cascade process.
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